Precise Measurements of The ²³⁸U(n,2n)²³⁷U Cross-Section by Activation at TUNL

Matthew Gooden

Nuclear Data Week at BNL 11/5/2014

1

Researchers

Duke

- Krishichayan → principal researcher
- Werner Tornow
- NC State
 - Matthew Gooden*

^{*} Currently a Postdoc at Los Alamos National Laboratory

<u>Outline</u>

- Motivation
- Experimental Setup
- Results
- Future

Motivation

Nuclear Database

- Database for Nuclear Device performance (i.e., fast reactor, advanced heavy water reactor)
- Testing bench for nuclear models
- Homeland security

Existing data sets are discrepant

- Below ~14 MeV evaluations are discrepant
- Each evaluation is relying on data which are discrepant by 20-30% from each other

Experimental Design

Monoenergetic Neutron Irradiation

10 MV Tandem facility at TUNL

- Neutrons produced by:
 - ²H(d,n)³He
 - ³H(d,n)⁴He
- Target positioned 2.5 cm from end of neutron production source
 - ¹⁹⁷Au monitor foils on either side of target

Characteristic gamma-lines belonging to ¹⁹⁶Au and ²³⁷U

Decay curves for:

- , 237**U**
- ¹⁹⁶Au
- , ²⁴Na

Activation Method

$$\sigma = \frac{N_{\gamma}\lambda}{\phi \cdot \epsilon \cdot I_{\gamma}(1 - e^{-t_a\lambda})e^{-t_d\lambda}(1 - e^{-t_m\lambda})}$$

 $N_{\gamma} = \gamma$ -ray counting yield

 λ = decay constant for ²³⁷U

 ϕ = neutron flux given in n/(s·cm²)

 ϵ = γ -ray detector efficiency for line of interest

 I_{γ} = Branching ratio for γ -ray line of interest

 $t_{a,d,m}$ = times for activation, decay and measurement

 Neutron flux is determined with the same equation but relating to the activation foils were the cross-section σ is already known

Targets

- First measurements were done using the ²³⁸U target from the TUNL-LANL-LLNL FPY measurements
 - 442 mg, 99.97% enriched
- LANL has provided 5 new ²³⁸U targets which are being utilized to speed up data collection since the original target was being used in separate measurements
- The new targets are:
 - All enriched to 99.7%
 - 1) 172.5 mg
 - 2) 242.6 mg
 - 3) 240.8 mg
 - 4) 236.6 mg
 - 5) 260.7 mg

Current Status

E _n (MeV)	¹⁹⁷ Au(n,2n) ¹⁹⁶ Au σ (b)	²⁷ Al(n,α) σ (b)	Flux (n/(s cm²))	²³⁸ U(n,2n) ²³⁷ U σ (b)
9.5		0.079	2.75×10 ⁷	1.36(0.04)
10.5	1.22		2.91x10 ⁷	1.42(0.04)
11.0	1.42		2.93x10 ⁷	1.42(0.04)
11.5	1.58		2.18x10 ⁷	1.44(0.04)
12.0	1.71		1.97x10 ⁷	1.43(0.04)

- Data also taken for:
 - 8.0, 8.5, and 9.0 MeV → analysis almost complete
 - 14.8 MeV* taken on Friday
 - 7.5 MeV taken on Sunday

Preliminary results

Summary

- Performed measurements at 9 incident neutron energies:
 - ▶ 7.5, 8.0, 8.5, 9.0, 9.5, 10.5, 11.0, 11.5, 12.0 and 14.8* MeV
 - repeating a measurement at 10.0 MeV
- Two separate & independent measurements were conducted at 14.8 MeV
 - Standard Activation with Au reference foils
 - Fission Chamber method presenters talk from yesterday
- Both ¹⁹⁷Au and ²⁷Al reference foils were used and cross checked at 9.5 MeV
- The present data supports the JENDL-4.0 evaluation in the 8-12 MeV range
 - However, above 13 MeV the existing data are very consistent and JENDL predicts consistently higher cross-sections

THANK YOU

Preliminary results

